联系盛唐环保

电 话:0531-83483958
传 真:0531-83483926
服务热线:400-176-8788

企业位置
百度地图API自定义地图
 

化工厂有机废气处理方法有哪些?

作者:盛唐环保浏览次数: 日期:2018年3月21日 16:49

    化工厂处理有机废气常用的3种方法。化工厂排放的废气和它所生产的产品有关,具有特征性。一般废气中含有二氧化硫,含氟产品的使用以及氟化氢的生产都会产生氟及其化合物,氮氧化物,颗粒物,铬酸雾,硫酸雾,氟化物,氯气,铅及其化合物,汞及其化合物,镉及其化合物,铍及其化合物,镍及其化合物,锡及其化合物,苯,甲苯,二甲苯,酚类,乙醇,丙烯腈,丙烯醛,氰化腈,甲醇,苯胺类,氯苯类,硝基苯类,氯乙烯,光气,沥青烟,石棉尘,非甲烷总统。

以上这些都具有很鲜明的行业生产产品的特征废弃相关的产物。当这些污染物超过了大气排放的质量标准时,将对人产生影响。如果要对这些废气进行处理,普遍会采取化工厂有机废气处理方法来处理该类型的废气,简单介绍一下吧:

    1、吸收法:在控制化工废气等有机化合物的污染方面,化学吸收法采用比多多,例如用水吸法收以及萘或邻二甲苯作为原料,生产苯酐时所产生的含有苯酐、顺酐、苯甲酸、萘醌等的废气;用水及碱溶液吸收氯醇法处理掉环氧丙烷生产中的次氯酸化塔尾气(酸性组分),并回收丙烷用碱液循环法吸收磺化法苯酚生产中的含酚废气,再用酸化吸收液对苯酚进行回收;用水吸收法吸收了含甲醛的尾气。此外,在农药及染料生产中同样也会使用碱液吸收尾气中的H2s,用水吸收HC1等污染物。此项技术的主要问题是需解决设备的腐蚀;

    2、吸附法:吸附法可应用于净化涂料、油漆、塑料、橡胶等化工生产排放出的含溶剂或有机物的废气,通常用活性炭作吸附剂。活性炭吸附塔最常见的是用于净化氯乙烯和四氯化碳生产中的废气,在涂料、油漆生产和喷漆、印刷上也被广泛应用。目前存在的问題是活性炭的再生技术尚不十分完善,处理成本较高,并且在某些行业中,由于解吸回收的产品质量较差,销路受到影响。故活性炭吸附法只适用于处理某些高浓度有机废气,回收的有机物或溶剂又可回用于生产,使处理费得到补偿;

    3、焚烧法:有机化工生产废气中的有机污染物或恶臭物质,可用直接燃烧法或催化燃烧法治理。要求燃烧必须完全,否则焚烧过程中形成的中间产物可能比原来的污染物危险更大。要使燃烧完全,必须很好掌握燃烧时间、温度和湍动这三个重要参数。直接燃烧可采用火炬或焚烧炉。火炬燃烧法用于处理含有足够可燃物的废气,废气的热值需在925kJ/m3以上,火炬为常压燃烧器,燃烧效率较低。如使用与锅炉或工业炉类似的强制送风燃烧炉,燃烧效果比火炬好。直接燃烧通常在1000C左右进行,完全燃烧产物为C02、N2和水蒸气等。 

    希望以上的资料能对您有所帮助,当然不只是这三种方法,如果您担心这三种方法处理废气无法达标的话,请联系我们,我们会根据您的现场废气实际情况免费为您设计废气处理解决方案。请拨打:0531-83483958

 

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

  近年来随着经济的发展,化工企业的大量新起,在加上环保投资力度的不够,导致了大量工业有机废气的排放,使得大气环境质量下降,给人体健康来严重危害,给国民经济造成巨大损失,因此,需要加大对有机气体的处理。对有机气体的治理,人们早就有研究,而且已经开发出一些卓有成效的控制技术,如广泛采用的有机废气处理方法并且研究较多的有热破坏法、冷凝法、吸收法等,近年来形成的新控制技术有生物膜法、电晕法、等离子体分解法等。本文将对如今常用的13种有机气体处理方法作较为详细的介绍,不知道你知道几种?

  

1、热破坏法:

 

  热破坏是目前应用比较广泛也是研究较多的有机气体处理方法,特别是对低浓度有机废气,有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧。直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。

  

  催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度。催化剂在催化燃烧系统中起着重要作用。用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。非金属催化剂有过渡族元素钴、稀土等。近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。例如V2O5 MOX(M:过渡族金属) 贵金属制成的催化剂用于治理甲硫醇废气,Pt Pd Cu催人剂用于治理含氮有机醇废气。

  

  由于有机气体中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。催化剂载体起到节省催化剂,增大催化剂有效面积,使催化剂具有一定机械强度,减少烧结,提高催化活性和稳定性的作用。能作为载体的材料主要有AL2O3、铁钒、石棉、陶土、活性炭、金属等,最常用的是陶瓷载体一般制成网状、球状、柱状、峰窝状。另外近年来研究较多且成功的有丝光沸石等。对催化燃烧而言,今后研究的重点与热点仍将是探索高效高活性的催化剂及其载体,催化氧化机理。

  

2、液体吸收法:

 

  液体吸收法是利用液体吸收液与有机废气的相似相溶性原理而达到处理有机气体的目的。通常为强化吸收效果用液体石油类物质、表面活性剂和水组成的混合液来作为吸收液。近年来,日本人研究利用了用环糊精作为有机卤化物的吸收材料,根据环糊精对有机卤化物亲合性极强的原理,将环糊精的水溶液作为吸收剂对有机卤化物气体进行吸收。这种吸收剂具有无毒不污染,捕集后解吸率高,回收节省能源,可反复使用的优点。

  

3、吸附法:

  

  活性炭吸附塔的应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广的优点,有很好的环境和经济效益。缺点是设备庞大,流程复杂,当废气中有胶粒物质或其他杂质时,吸附剂易中毒。吸附法主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。决定吸附法处理VOCs的关键是吸附剂,吸附剂应具有密集的细孔结构、内表面积大、吸附性能好、化学性质稳定、不易破碎、对空气阻力小等性能,常用的有活性炭、氧化铝、硅胶、人工沸石等。

  

  目前,多数采用活性炭,其去除效率高。活性炭有粒状和纤维状两类。颗粒状活性炭结构气孔均匀,除小孔外,还有10~100nm的中孔和1.5~5um的大孔,处理气体从外向内扩散,吸附脱附都较慢;而纤维活性炭孔径分布均匀,孔径小且绝大多数是1.5~3nm的微孔,由于小孔都向外,气体扩散距离短,因而吸附脱附快。经过氧化铁或氢氧化钠或臭氧处理的活性炭往往具有更好的吸附性能。

  

4、冷凝法:

  

  冷凝法是利用物质在不同温度下具有不同饱和蒸汽压这一性质,采用降低系统温度或提高系统压力,使处于蒸汽状态的污染物冷凝并从废气中分离出来的过程。冷凝过程可在恒定温度的条件下用提高压力的办法来实现,也可在恒定压力的条件下用降低温度的办法来实现,一般多采用后者。利用冷凝的办法,能使废气得到很高程度的净化,但是高的净化要求,往往是室温下的冷却水所不能达到的。净化要求愈高,所需冷却的温度愈低,必要时还得增大压力,这样就会增加处理的难度和费用。因而,冷凝法往往与吸附、燃烧和其他净化手段联合使用,以回收有价值的产品。

  

5、生物法:

  

  生物净化实质上是一种氧化分解过程:附着在多孔、潮湿介质上的活性微生物以废气中有机组分作为其生命活动的能源或养分,转化为简单的无机物(CO2、H2O)或细胞组成物质。现阶段主要工艺包括:生物过滤床、生物滴滤床以及生物洗涤床。1.5.1生物过滤床生物过滤床是一种在其中填入具有吸附性滤料(如泥炭、土壤、活性炭等物质)的净化装置。挂生物膜前,在过滤床中掺入pH缓冲剂和N、P、K等营养元素(如NH4NO3和K2HPO3),当具有一定湿度的废气进入生物滤床,通过约0.5~1m厚的生物活性填料层时,滤料中的微生物(主要是细菌、放线菌、原生动物、藻类等)即可通过接触而捕获废气中的有机物并将其作为自身生长的碳源。因此,废气通过生物过滤床后即可被净化,而滤料层中的微生物在生化降解污染物的过程中不断生长繁殖,从而使生物滤池的操作得以持续进行。滤料使用一年后一般呈酸性,要定期进行维护和保养。

  

  不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。

  

6、脉冲电晕法:

  

  脉冲电晕法基本原理是通过前沿陡峭、脉宽窄(纳秒级)的高压脉冲电晕放电,能在常温、常压下获得非平衡等离子体,即产生大量高能电子和O、H0等活性粒子,与有害分子进行氧化降解反应,使污染物最终转化为无害物。1988年以来,美国就开展了电晕法降解低浓度的挥发性有机物的研究。研究表明在环境通常温度和压力下,该法能达到较好的效率。

  

7、膜分离法:

  

  膜分离法的基本原理是基于气体中各组分透过膜的速度不同,每种组分透过膜的速度与该气体的性质、膜的特性与膜两边的气体分压有关。膜分离法净化有机废气是根据有机蒸气和空气透过膜的能力不同,而将二者分开的。常用膜分离工艺有:蒸气渗透、气体膜分离和膜基吸收法。膜分离技术用于气体净化上的优点是投资费用低、分离因子大、分离效果好(即净化效果好),而且膜法净化操作简单、控制方便、操作弹性大。

  

8、光分解法:

  

  光分解VOCs有两种形式:一种是直接光照在波长合适时,VOCs分解;另一种是催化剂存在下,光照VOCs使之分解。有研究表明,有机氯化物和氟氯烃在185nm紫外光照射下,两种物质都能在极短的时间内分解,卤代物的分解速度大于氟氯烃;三氯乙烯几秒钟内即能分解成氧气、氯气、氟气等。光分解可产生中间产物,可通过氢氧化钠溶液处理或延长滞留时间等手段最终去除。

  

  光解废气净化装置技术原理是光催化剂如TiO2在紫外线的照射下被激活,使H2O生成OH自由基,然后OH自由基将有机污染物氧化成CO2和H2O.用TiO2催化剂时可采用普通的荧光灯为光源来消除恶臭和非常低浓度的污染物。受催化剂降解效率的影响,光催化氧化法在工业上的应用还待开发。

  

9、等离子体分解法:

  

  低温等离子废气处理设备是利用等离子体分解氯氟烃的技术已到实用阶段,植松信行研究了利用等离子体的化学作用分解氯氟烃之类难分解气体为无害物的应用。此技术可在短时间内进行大量的氯氟烃等气体的处理。此过程采用二个系统,一系统利用高频等离子体急速加热,使温度达10000℃利用等离子体的化学作用与水蒸汽接触进行分解的超高温加水系统;第二个系统是将高温分解的排气急冷到80℃下的排气系统。该系统是由氯氟烃和水蒸汽的供给装置、等离子体发生装置、反应炉、冷却罐以及排水处理装置等构成。

  

10、微波催化氧化技术:

  

  微波空气净化技术是由填料吸附-解吸技术发展而来,是将传统解吸方式转变为微波解吸,微波能的应用大大减少了能量的消耗,并缩短了解吸时间,而且吸附剂经20次解吸后基本上保持原有吸附能力。微波解吸技术对空气的净化基本上与其在水处理中的应用类似,解吸原理都可以用“容器加热理论”和“体积加热理论”加以解释。国内外在水处理中均有此方面的成功应用,而在空气净化中的应用,国外已有小规模的成功范例,国内尚处于起步阶段。

  

11、变压吸附分离与净化的技术:

  

  变压吸附分离与净化的技术(PSA)是利用气体组分在固体吸附材料上吸附特性的差异,通过周期性的压力变化过程实现气体的分离与净化。PSA技术是一种物理吸附法。一般采用沸石分子筛作为吸附剂(吸附容量大、吸附选择性强)。在常温及一定压力条件下,可把有机废气中吸附在沸石分子筛上,没有被吸附的气体进入下一个工段。吸附有机废气以后的吸附剂通过降压抽真空把有机物解吸,使吸附剂再生。再生后的吸附剂重新去吸附废气中的有机物,以此循环往复。PSA技术是近几十年来在工业上新崛起的气体分离技术,具有能耗低、投资少、流程简单、自动化程度高、产品纯度高、无环境污染等优点,是各种气体分离与回收的较理想的方法,极富有市场竞争力,在不久的将来将会在工业上迅速推广。

  

12、臭氧分解法

  

  臭氧分解法国内未见报导,国外对此技术的研究也还极少。有研究表明O3可用于净化地面废气,即能分解土壤中非挥发性有机物多环芳香有机物、脂肪族有机物、酚和杀虫剂,此时用地面气作O3载体。另外,研究人员还特别注意了O3处理后土壤的微生物状态变化,结果显示细菌减少99%,呼吸性能降低。为此,研究人员通过用纯O2和未反应的O3的分解控制技术,减少O3处理对土壤的生态系统的影响,从而达到安全的目的。

  

13、电化学氧化法

  

  电化学氧化技术是采用一种内装专利膜和AgNO3-HNO3溶液的化学电池,在温度为50~100℃和常压的条件下进行氧化,在阳极,VOCs恶臭气体转化为CO2和H2O;在阴极,生成亚硝酸,经处理后可循环使用。该法的典型特点:VOCs恶臭物质去除率高,可达99%以上,但运转费用亦高较高。

 

  我公司专业生产有机废气处理设备、工业废气处理设备,主要产品包括光氧催化废气处理设备、光解式废气净化装置、移动焊接烟尘净化器、活性碳吸附塔、低温等离子设备、废气洗涤塔,可根据您的现场废气实际情况免费为您设计废气处理解决方案。咨询热线:0531-83483958

COPYRIGHT © 山东盛唐环保有限公司 鲁ICP备:15014783号 技术支持:中企动力管理登录

本网站部分图片和内容来源于网络,版权归原作者或原公司所有,如果您认为我们侵犯了您的版权请联系我们删除